Chp3 Lect 2: Change of States 1 pt ec printing

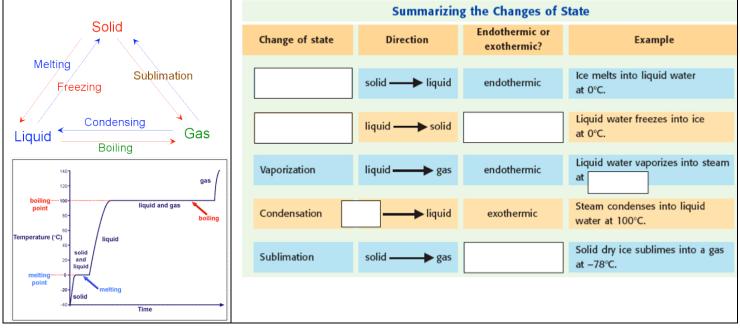
Review: 1. What are the 5 states of matter?		2. How do the molecules move in the 3 main states?			
States & Phases					
	known as a	Elements and compounds can move from one phase			
		are present. One example of those forces is temperature. The			
phase or state of matter car	n change when the	e temperature changes. Generally, as the			
rises, matter moves to a mo		EACH ADDITION OF			
It's All About the Energy		A CHANGE IN STATE			
It's totally possible to go fro					
a gas, and back again. The		LIQUIDS			
changes or phase changes.					
energy. Which state you go		change of state, the energy of the			
		If you remove energy			
from a substance, the partic					
		eed of particles. Each state has a			
		der to be a solid or BEC, the particles			
are fine just chilling - so the	ey don't need as mu	uch energy.			
Two Types of Energy Ch					
		taken in, by a substance (absorbs heat – feel			
2: ene	rgy is removed, or	taken out, of a substance (releases heat – feels			
Melting:	How does melting				
to		s heated, it absorbs energy and its atoms and			
Let's start with an ice cube.	molecules begin oscillating, or moving. Eventually, they move so				
This ice cube starts off as a solid. When we add heat	much that they break some of their bonds of attraction which are				
(energy), it begins to melt	holding them tightly in place. They move <i>so</i> vigorously that they begin to move past one another, flowing like a liquid. Thus, as				
into a liquid.	energy is being absorbed, this is an				
	change.				
Melting Point	U	Condentation - Boiling Point Dew Point			
The of a substance is the temperature at which a substance changes from the solid					
		rery high temps. The melting point is typically a			
	tance. We can use m	elting points to determine the identity of a			
substance.	to	A special kind of Vaporization			
Vaporization: to Now let's take that water and put it into a pot		A special kind of Vaporization is vaporization that occurs at the surface of			
over flame. Eventually, the water will start to boil		the liquid, below its boiling point. This happens because as the liquid			
		is heated, some particles manage to escape early, before the boiling			
and turn into a gas is the name of this process. Boiling is vaporization that		point is reached. When they escape, they leave the surface of the			
occurs throughout a liquid. The temperature at		liquid to become a gas. Sweating is a natural process used by humans			
which a liquid boils is its		to cool off. When we sweat, the water absorbs the heat (energy) and			
01		gives the sensation of cooling.			
water =	c bonnig point of	gives the sensation of coornig.			

How does Boiling work?

When you're heating a pot of water, the heat energy is making the water molecules move faster and faster. When enough thermal energy (heat) is added, the intermolecular forces in the substance are completely overcome and the liquid becomes a gas.

Condensation:

_____to


Condensation happens when several gas molecules come together and form a liquid. It all happens because of a loss of energy. Gases are really excited atoms. When they lose energy, they slow down and begin to collect. They can collect into one drop. Water condenses on the lid of your pot when you boil water. It cools on the metal and becomes a liquid again. You would then have a condensate.

Freezing:	to	How does freezing work?	LOW -	EMPERATUR	e High
Now let's reverse melting. Let's take our liquid water and put it in the freezer - where it will turn into a solid. The temperature at which a liquid changes into a solid is its point. Freezing		As energy leaves, the particles begin to slow down. They become pulled into a more ordered arrangement, or a locked	SOLID	LIQUID	GAS
U ;		position. Or basically, into a solid!	FREE	ZING BOIL NT PO	ING

Sublimation:	Directly to	Example of Sublimation
This phase change totall	y bypasses the liquid state. This is an	is an example of
change	, because the only way this can happen	sublimation. Dry ice is solid carbon
is if the atoms are sudde	enly moved very far apart (think of how	dioxide (CO2). Carbon Dioxide is
much space a gas wants	to take up). And the only way the	typically found as a gas. When it is
atoms can be moved far	apart from one another is if the	frozen into a solid, it turns directly into
attraction between particles is completely overcomewhich		a gas and totally skips the liquid stage.
requires lots of energy!		

Two More Really Important Points...

First, all phase changes are ______changes, not chemical changes. This is because the substance stays the same before and after the state change. It is just changing its shape, not itself! Second, the temperature of a substance does NOT change during a phase change. It only changes before or after the change.

